If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16.1t^2-45.9t-14=0
a = 16.1; b = -45.9; c = -14;
Δ = b2-4ac
Δ = -45.92-4·16.1·(-14)
Δ = 3008.41
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-45.9)-\sqrt{3008.41}}{2*16.1}=\frac{45.9-\sqrt{3008.41}}{32.2} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-45.9)+\sqrt{3008.41}}{2*16.1}=\frac{45.9+\sqrt{3008.41}}{32.2} $
| 1+2x=115 | | 10=2(w-5)+2 | | 4x^2+10=154 | | -8-6s=3s-8+9s | | 6-4x=7x-9x+8x | | 2m-10=-8m-4(5m-5) | | 15=3t—6 | | 8.50x+10,300=12.00x+8,700 | | 2(8x+6)=4(4x-3) | | a-8/5=5 | | 8x-2x+64=8x+36 | | −(6x−2)=-(6x-3) | | x+.25x=1625 | | 84=2(4n+7)+6 | | 2x-2x+11=11 | | -7=5p-13-4p | | 30x+45=50x+25 | | -5a+14=15 | | 2w-20=800 | | 16+2t=5t+916+2t=5t+9 | | b-9=9+10b | | 7x+6=−2x+60 | | 5x-20=5(x-20 | | 8(1-6p)=200 | | -2|x-5|=-10 | | -4(4y-1)+5y=9+2(2y-1) | | 4x+2x+7+1=180 | | 3×-2x=33 | | 5.3g+9=1.3g+29 | | 120-2.5x=1.5x | | 7x=-20-6 | | 1.2x-15=-3.8x+21 |